e produz fenômenos equivalentes ao sistema de categorias, com isto se tem uma relação de causa e efeito.
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].


x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl


x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl

x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
n → p + e-
+ ν. + [s c Graceli]
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl

x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl

x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl

x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl


x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
+ [s c Graceli]
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
O coeficiente de espalhamento μs [cm-1] descreve um meio que contém muitas partículas espalhadoras em uma concentração descrita por uma densidade volumétrica ρ [cm3]; o coeficiente de espalhamento é essencialmente a seção de choque σs por unidade de volume do meio.[4][5]
O recíproco do coeficiente de espalhamento pode ser entendido como a distancia média que a partícula viaja antes de interagir com o meio, ou seja, ser espalhado.
+ [s c Graceli]
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
+ [s c Graceli]
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Quando um alvo é um conjunto de vários centros espalhadores cujas posições relativas variam de forma imprevisível, é costumeiro que se pense em uma equação de alcance cujos argumentos tomem diferentes formas em diferentes áreas de aplicação. O caso mais simples considera uma interação que remove partículas de um "feixe não espalhado" a uma taxa uniforme que é proporcional ao fluxo incidente de partículas por unidade de área por unidade de tempo, ou seja, que
onde "Q" é um coeficiente de interação e "x" é a distância viajada no alvo.
A equação diferencial ordinária de primeira ordem acima tem soluções da forma:
onde Io é o fluxo inicial, comprimento de caminho Δx ≡ x − xo, a segunda igualdade define uma interação de livre caminho médio λ, a terceira usa o número de alvos por unidade de volume, η, para definir uma área de seção de choque σ, e a última usa a densidade de massa do alvo, ρ, para definir uma densidade de livre caminho médio, τ. Dessa forma, podemos relacionar essas quantidades por meio de Q = 1/λ = ησ = ρ/τ, como mostrada na figura à esquerda.
Em espectroscopia de absorção eletromagnética, por exemplo, o coeficiente de interação (ou seja, Q em cm−1) é comumente chamado de opacidade, coeficiente de absorção e coeficiente de atenuação. Em física nuclear, seções de choque (ou seja, σ em barns ou unidades de 10−24cm2), densidade de livre caminho médio (ou seja, τ em gramas/cm2), e seu recíproco, o coeficiente de atenuação de massa (em cm2/gram) ou "área por nucleon" são todos populares, enquanto em microscopia eletrônica o livre caminho médio inelástico [1] (ou seja, λ em nanômetros) é frequentemente discutido[2] ao invés dos outros..
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Compton usou uma combinação de três fundamentais fórmulas representando os diversos aspectos da física clássica e moderna, combinando-os para descrever o procedimento quântico da luz.
- Luz como uma partícula;
- Dinâmica Relativística;
- Trigonometria.
O resultado final nos dá a Equação do Espalhamento de Compton:
onde
- é o comprimento de onda do fóton antes do espalhamento,
- é o comprimento de onda do fóton depois do espalhamento,
- me é a massa do elétron,
- é conhecido como o comprimento de onda de Compton,
- θ é o ângulo pelo qual a direção do fóton muda,
- h é a constante de Planck, e
- c é a velocidade da luz no vácuo.
Coletivamente, o comprimento de onda de Compton é 2.43×10-12 m.
Nenhum comentário:
Postar um comentário